

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

 PRIVATE INFORMATION RETRIEVAL

UNIVERSITY OF WISCONSIN

December 2010

FINAL TECHNICAL REPORT

AFRL-RI-RS-TR-2010-225

 ROME, NY 13441 UNITED STATES AIR FORCE AIR FORCE MATERIEL COMMAND

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for
any purpose other than Government procurement does not in any way obligate the U.S.
Government. The fact that the Government formulated or supplied the drawings,
specifications, or other data does not license the holder or any other person or corporation;
or convey any rights or permission to manufacture, use, or sell any patented invention that
may relate to them.

This report is the result of contracted fundamental research deemed exempt from public
affairs security and policy review in accordance with SAF/AQR memorandum dated 10 Dec
08 and AFRL/CA policy clarification memorandum dated 16 Jan 09. This report is
available to the general public, including foreign nationals. Copies may be obtained from
the Defense Technical Information Center (DTIC) (http://www.dtic.mil).

AFRL-RI-RS-TR-2010-225 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE DIRECTOR:

 /s/ /s/
FRANK BORN WARREN H. DEBANY JR., Technical Advisor
Work Unit Manager Information Grid Division

Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

http://www.dtic.mil

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

December 2010
2. REPORT TYPE

Final Technical Report
3. DATES COVERED (From - To)

January 2009 – July 2010
4. TITLE AND SUBTITLE

PRIVATE INFORMATION RETRIEVAL

5a. CONTRACT NUMBER
FA8750-09-2-0066

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Somesh Jha
Vitaly Shmatikov
Matthew Fredrikson

5d. PROJECT NUMBER
NICE

5e. TASK NUMBER
00

5f. WORK UNIT NUMBER
18

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Wisconsin
System Research & Sponsored Programs
21 N. Park Street, STE 6401
Madison WI 53715-1218

8. PERFORMING ORGANIZATION
REPORT NUMBER

 N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory Office of the Director of National Intelligence
RIGA Intelligence Advanced Research Projects Agency
525 Brooks Road Washington DC 20511
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)
 AFRL/RI

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-RI-RS-TR-2010-225

12. DISTRIBUTION AVAILABILITY STATEMENT

Approved for Public Release; Distribution Unlimited. This report is the result of contracted fundamental research
deemed exempt from public affairs security and policy review in accordance with SAF/AQR memorandum
dated 10 Dec 08 and AFRL/CA policy clarification memorandum dated 16 Jan 09.
13. SUPPLEMENTARY NOTES

14. ABSTRACT

This report describes the IARPA sponsored private information retrieval (PIR) project. The approach is based
on the keyword-oblivious transfer cryptographic primitive, which allows a client and server to negotiate an
exchange of data based on a keyword not learned by the server. Although no protocols exist that allow this
primitive to scale to the magnitude needed by PIR, we utilize a semi-trusted third party to meet the stated
requirements. We evaluated this approach against a 60 gigabyte database and a set of queries provided by the
MIT-LL test team. This approach exceeded the given performance requirements, with most of the performance
penalty coming from encryption and decryption, rather than keyword-oblivious transfer.
15. SUBJECT TERMS
Private Information Retrieval, Privacy, MySQL, Private Search, PRI

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

40

19a. NAME OF RESPONSIBLE PERSON

FRANK BORN

a. REPORT

U
b. ABSTRACT

U
c. THIS PAGE

U
19b. TELEPHONE NUMBER (Include area code)

N/A

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.

i

Table of Contents

Executive Summary ... 1

Introduction …………………………………………………………………………………………….………………………………………….....1

Technical Approach ... 1

Definitions ... 2

Primitives .. 2

PIR Protocol ... 3

Security Properties .. 4

Lessons Learned .. 5

Implementation and Performance Evaluation ... 6

Results ... 8

Activities .. 14

Conclusions ... 14

References .. 15

Acronyms .. 14

Appendix A .. 16

ii

List of Figures

Figure 1: Experimental Setup. (Courtesy of MIT –LL) ... 5

Figure 2: PIR Time vs. MySQL base time ... 9

Figure 3: Response Time for Tiny Queries .. 10

Figure 4: Response Time for Small Queries ... 11

Figure 5: Response Time for Medium Queries ... 12

Figure 6: Response Time for Large Queries .. 13

1

1 Executive Summary

In this report, we describe our activities related to the private information retrieval (PIR) project.
Our approach is based on the efficient implementations of the keyword-oblivious transfer
cryptographic primitive, which allows a client and server to negotiate an exchange of data based
on a keyword not learned by the server. Although no protocols exist that allow this primitive to
scale to the magnitude needed by PIR, we utilize a semi-trusted third party, known as the isolated
box, to meet the stated requirements. We implemented our approach in a realistic prototype, and
evaluated its performance over a large (60 gigabyte) database and a set of queries provided by
the MIT-LL test team. We found that our approach meets and exceeds the given performance
requirements, with the majority of the performance penalty over plain MySQL processing
coming from encryption and decryption, rather than keyword-oblivious transfer.

2 Introduction

The goals of the Automatic Privacy Protection program are to “develop and demonstrate

practical, sound automated methods for the use of private information retrieval techniques in

Intelligence Community systems, to automatically protect the private data of untargeted

individuals, to assure the mandated policies are enforced, and to enable more effective

interagency and intergovernmental data sharing for improved security.” To this end, we have

pursued the development of efficient protocols for the Private Information Retrieval (PIR)
problem: a client queries a large-scale database on a potentially adversarial server, and learns the
correct answer to his query without leaking any information about it to the server. We have
demonstrated formally that our PIR protocol meets the stated privacy needs of IARPA, and
produced a working prototype. A team of independent testers from MIT-Lincoln Labs has
verified that our prototype is functional and bug-free on a large test corpus, and that is exceeds
IARPA's minimum performance requirements by more than an order of magnitude. Our
prototype is even more efficient since the MIT-LL test was conducted.

3 Technical Approach

As per the rules of engagement (ROE), our system has three primary components: a client, a
server, and an isolated box.

• The server holds a plaintext database, consisting of an arbitrary number of rows
organized according to a single schema. It communicates with the client and isolated box
to provide responses to queries in an oblivious fashion.
Assumptions: It is assumed that the server is honest-but-curious; it follows the protocol,
and does not collude with the isolated box, but may attempt to learn more about the
contents of the client’s queries by running additional algorithms over its view (messages
exchanged during the protocol).
Guarantees: The server learns no information from processing a query. The keyword
oblivious transfer (KOT) protocol used to match a query guarantees that the server does

2

not learn either the field over which the query is performed, or the field value targeted by
the query. Furthermore, after completing the protocol, the server has provided the client
with the information needed to retrieve, in clear text, exactly the rows of the database
corresponding to the query.

• The client issues queries to the server, which take the form of a single attribute-value
pair for each query. The attribute is an element of the schema, and the value is to be
matched by each row in the query’s result set.
Assumptions: It is assumed that the client is honest-but-curious, and does not adaptively
select queries to learn more about the database than intended by the policy.
Guarantees: Upon completing a query, the client learns the following information about
the database: the number of rows matching its query, the plaintext of each matching row,
and the size of the database. It does not learn the plaintext of any rows not matching its
query, and there are no rows in the database that match its query for which it does not
learn the plaintext.

• The isolated box maintains an encrypted, permuted version of the server’s database.

Intuitively, the isolated box serves as an oblivious storage point that allows our protocol
to optimize the amount of network traffic transferred in the course of serving a query.
Assumptions: It is assumed that the isolated box is honest-but-curious. It does not
collude with the client to learn more about the server’s database, and it does not collude

with the server to learn more about the client’s query.
Guarantees: The isolated box can learn the approximate frequency with which an
individual encrypted, permuted record of the database is accessed. Note that the isolated
box does not learn the contents of the record and the frequency-of-access information is
not perfect due to randomness introduced by the client.

3.1 Definitions

A database D is a set of records indexed by t attributes A1, . . . ,At, where we identify an

attribute Ai with the set of attribute values it may take. Each record r of the database takes the

form r = (x1, . . . , xt, y) with each xi in A denoting an attribute value, and y in {0, 1}l (for some

length parameter l) being the payload. We assume a database contains no duplicate records.

Queries are of the form (i, x) where 1 ≤ i ≤ t and x in Ai. The query q = (i, x) represents a

request for all records whose value in the ith attribute is x. (For such a query, we call i the

relevant attribute and x the keyword.) Formally, for the query q = (i, x) on a database D we

define q(D) = {(x1, . . . , xt, y) in D | xi = x} as the set of records that match the query.

3.2 Primitives

We assume a semantically-secure encryption scheme E = (E, U) defined over (K, M, C), where

K is the keyspace, M is the space of plaintexts, and C is the space of ciphertexts. Additionally,

3

we assume a cryptographically-secure hash function, and previously-established RSA credentials
(N, e, d) for the server (N is the modulus, e is the public exponent, and d is the private key).

Finally, we assume a keyword oblivious transfer (KOT) scheme OTk1,...,km, the security of which is
based on the intractability of the one-more-RSA-inversion problem.

3.3 PIR Protocol

The protocol works in three stages. In the preprocessing stage, S initializes IB with information

from D. In the second (query) stage, C, S, and IB communicate to serve a query from C. The
preprocessing stage is performed once before any queries are served, and periodically when
needed to ensure the privacy of D according to refresh parameter r. The second is performed

each time C has a new query. In the third (refresh) stage, a decision is made as to whether the

preprocessing stage is re-executed to gain additional privacy for D.

• Preprocessing stage:

1. S does the following once, before any queries are served:

– Picks n random keys k1, . . . , kn from K.

– Picks a random permutation s of n elements.

– Prepares n ciphertexts c1, . . . , cn, where ci = Eki(Ri).

– Sends the list c_1, . . . , c_n to the isolated box IB.

– Initializes the refresh counter: cnt to 0.

• Query stage:

1. C and S perform a keyword oblivious transfer step. C’s input is (i, x) (the entire

query), and S’s input is:

{([i, xij], [Kij , Iij]) | 0 ≤ i < l, 0 ≤ j < |Ai|, xij in Ai} ∪ PD

where

Kij = {kh | rh = (xh,0, . . . , xij , . . . , xh,l)}

and

Iij = {s−1(h) | rh = (xh,0, . . . , xij , . . . , xh,l)}

4

and

PD = {([Ri, xRi], [kRi , IRi]) | 0 ≤ i < l|D| −

 xRi not in ARi}

where R is a random sequence of integers between 0 and l, k is a random sequence of

elements from K, and I is a random sequence of sets of database indices. Here the

quantity l|D| −
 refers to the number of additional cells that must be added to

hide the distinct number of attribute-value pairs in the database. Note the assumption that
Kij , Iij , kRi , and IRi are padded to the same length. The condition xRi not in ARi is to ensure
that the entries added for padding will never be returned as the result of the KOT
protocol. The purpose of including PD in the server’s input is to prevent leaking the
number of distinct attribute-value pairs in the database. At the end of the KOT protocol,
C receives [Kij , Iij] such that (i, xij) = (i, x). This is achieved using the keyword OT
scheme.

2. C asks IB for the encrypted rows listed in Iij .

3. IB sends C the ciphertexts indexed by Iij , {cs(s− 1(h)) | s− 1(h) in Iij}

4. C can now use the elements of Kij to decrypt those returned by IB, thus attaining:

{(x1, . . . , xt, y) in D | xi = x}

5. S updates the refresh counter: cnt cnt + 1.

• Refresh stage:

1. If cnt > r, then set cnt 0 and re-execute the preprocessing stage.

3.4 Security Properties

It can be shown that our protocol does not reveal to the server: (1) the attribute over which the

query is performed, (2) the value of the attribute queried for, or (3) the rows of the database

which are accessed to the server. (1) and (2) follow directly from the guarantees of the KOT
protocol that we use, and as such are subject to the same assumptions as that protocol (namely,
intractability of the one-more-RSA-inversion problem). The third property follows from the fact
that rows are only retrieved (during query processing) from the isolated box. Similarly for the
client, this protocol does not leak any information aside from the intended result – the rows of
the database that match the client’s query. This property follows from the guarantees of the KOT

5

Figure 1: Experimental Setup. (Courtesy of MIT-LL)

protocol, as well as the security of the encryption scheme E. As such, privacy from an honest-
but-curious client is subject to the same conditions on security as the KOT protocol. The privacy
of D from the isolated box follows from the security of our encryption scheme E. However, the
isolated box may learn the frequency with which the client accesses permuted rows of the
database. Because the rows are permuted randomly before being sent to the isolated box, an
adversary would need external (semantic) information in combination with this frequency
information to deduce further information about the contents of the database. Furthermore, the
adversarial utility of this information can be arbitrarily reduced by requiring the server to
periodically re-send the rows to the isolated box using a fresh permutation. This feature is
controlled by the parameter r; low values of r cause the server to enter the refresh phase more
often. The more often this happens, the less useful the information learned by the isolated box
becomes. However, each such refresh comes at the cost of substantial network overhead (for
large databases), in addition to negative cache effects. This gives the protocol a tunable
parameter: the refresh frequency offers various degrees of security for a quantifiable tradeoff in
efficiency.

4 Lessons Learned

We feel that one noteworthy aspect of our work in private information retrieval is that we were
able to scale to the requirements given by IARPA without developing any new cryptographic
primitives (in fact, as we discuss in Section 2, the performance of our protocol outperformed the
project goals by more than an order of magnitude). Recall that we rely on symmetric-key
cryptography to efficiently hide data as it travels over un-trusted channels, keyword oblivious-

6

transfer to hide the client’s query from the server while retrieving the correct set of rows, and

RSA to blind data within the keyword oblivious-transfer protocol. Particularly relevant is
keyword oblivious-transfer: the high-level functionality of this primitive parallels that of private
information retrieval so closely that implementing the needed functionality is merely a matter of
scale. In other words, one could use keyword-oblivious transfer to implement private information
retrieval, without further modification, were its performance at the scale mandated by IARPA
acceptable. Our insight was to use keyword oblivious-transfer only over data that indexes
relevant entries in the large database; when the client and server finish performing keyword
oblivious-transfer, the client can use this information to ask the isolated box for the full
information required to complete the private information retrieval protocol.

In one sense, this suggests that all of the mathematical tools needed to realize the demanding
functionality of private information retrieval have existed for years. We see this as further
evidence of the need for a new set of tools that compile privacy-sensitive programs from high-
level specifications to low-level primitives with rigorously-proven properties, such as keyword-
oblivious transfer. This will allow applications which have seemingly novel privacy
requirements, such as private information retrieval, to benefit from principles developed in the
software engineering community, such as code reuse, abstraction reuse, and low-level code
generation. In the context of privacy-preserving applications, these principles have strong
implications for correctness, as code/abstraction reuse oftentimes allow correctness proofs to be
reused without loss of rigor. Removing the need to manually develop new correctness proofs for
each protocol from the ground up is a major advantage. We see this as a primary advantage over
other teams’ solutions: re-using existing primitives to meet project requirements increased the
clarity of our protocol description and correctness proof.

Our original proposal was based on the concept of an optimizing compiler for privacy-preserving
applications. We view our activities with the private information retrieval protocol presented
above as a case study in this larger effort. This project has provided us with a realistic
application, corresponding evaluation dataset, and third-party testing. Moving forward, we will
leverage this to incorporate the abstractions and functionality used to complete the project into
such a compiler.

5 Implementation and Performance Evaluation

Implementation

We implemented our protocol in 10,501 lines of C++ source code for Linux. We use SQLite for
back-end database processing, as it is lightweight, easy to use, and highly performant in the
single-access, read-only setting. Our client prototype utilizes multiple threads to avoid network
and encryption-related bottlenecks. One thread constantly transfers data from the isolated box
over the network, and the other thread continually decrypts and displays the data. For most
cryptographic primitives, we utilized the OpenSSL library, including 256-bit AES to store an
encrypted copy of the database on the IB, and to generate secure pseudorandom numbers for key
data and database row permutations. We wrote our own implementation of the Kurosawa-Ogata
keyword oblivious transfer protocol, using 1024-bit RSA keys.

7

Experimental Setup

We evaluated the performance of our prototype experimentally. We loaded and ran the server
and isolated box components onto two Dell PowerEdge servers, matching the project
specification. The client was run on a Dell Inspiron 1545 matching the project specification. All
communications took place over a local gigabit ethernet network. This setup is depicted in
Figure 1.

Dataset and Benchmarks

The data that was used to perform the evaluation was provided by the MIT-Lincoln Labs test
team. It consists of two components:

 A synthetic database with a schema corresponding to personnel records for a hypothetical
company. The schema has 50 components arranged in a flat hierarchy, and 100,000
records corresponding to non-existent citizens with characteristics that fit the distribution
found in 2000 census data. The total size of this database is approximately 60 gigabytes.

 514 database queries arranged in 16 distinct test cases. These queries correspond to
182,348 database records, selected to test the full range of prototype operation.

Each test query consists of a SQL SELECT statement over a single attribute, with an equality
constraint on the value of the attribute. For example,

 SELECT * FROM people WHERE state = ‘NY’

To test different aspects of prototype performance, such as the ability to quickly begin returning
data for a large query, the query attribute is varied to account for the characteristics of the
underlying database. For example, querying sparse attributes allows the lookup performance of
the prototype to be evaluated, without excess noise due to large result set transfer.

On average, test queries produce results with less than 10% of the records in the database. Test
queries were broken into four categories:

 Tiny queries: fewer than 10 records.
 Small queries: between 10 and 1000 records.
 Medium queries: between 1000 and 10000 records.
 Large queries: greater than 10000 records.

The total benchmark suite contained 304 tiny queries, 224 small queries, 32 medium queries, and
4 large queries.

Metrics and Goals

The experiments tested four aspects of the implementation: correctness, query compilation time,
index lookup and search time, and retrieval, decryption, and display time.

 Correctness: Because the requirements of PIR are stricter than those for traditional
networked data retrieval, it is conceivable that the functionality of a PIR system might

8

differ from a traditional system. For each test in the benchmark suite, we ran an identical
test in a baseline MySQL installation to determine a baseline truth. We then checked the
contents of each result against the baseline MySQL results, checking that both:

1. The PIR prototype returns the same number of records as the MySQL installation.
2. Each byte of each decrypted record returned by the PIR prototype matches the

corresponding byte in the corresponding row returned by the MySQL installation.
 Client Query Compilation (CQC) Time: This corresponds to the period of time needed

on the client to encode and send a query to the server.
 Index Lookup and Search (ILS) Time: This corresponds to the time needed for the

client, server, and isolated box to negotiate the PIR protocol. This begins when the
client’s packet is first received by the server, and ends when the server’s first result

packet is sent.
 Retrieval, Decryption, and Display (RDD) Time: This corresponds to the time needed

for the server to transfer all results to the client, as well as that needed by the client to
decrypt and display the results. This period begins when the client outputs the first byte
of the query result, and ends when all results have been displayed.

Each of these metrics is evaluated for each test query in the benchmark suite.

6 Results

Before we present the details of our results, we note that IARPA presented a number of
performance requirements that the PIR prototype must meet.

1. The average index lookup and search time must be less than 60 seconds.
2. The average retrieval, decryption and display time of the PIR system must be no more

than a factor of 100 more expensive than a corresponding baseline, non-PIR MySQL
system.

3. The PIR system must take less than 24 hours to bring the entire 60 gigabyte test database
online, ready to answer queries.

We are happy to report that our prototype meets and exceeds these requirements by substantial
margins. To summarize, our results demonstrate that PIR can be made both practical and
efficient. In particular:

 Bringing server and isolated box online is relatively inexpensive. For the 60 gigabyte
dataset, it takes approximately three hours to bring all data online, and come to a ready
state for query processing. There are two components to this cost: the transfer of
permuted rows between the server and isolated box (~2.5 hours), and pre-computing the
keyword oblivious transfer dictionary (~30 minutes).

 The overhead for performing keyword oblivious transfer is effectively constant, and
nearly negligible. On average, for the full 60 gigabyte dataset, KOT required 4 seconds.
This is significant, as performing KOT constitutes nearly all overhead required by PIR
over standard query processing.

 Overall PIR query processing time is <2x the standard MySQL base time. For
sufficiently large result sets, nearly all overhead is due to decryption time. This time can
be reduced further with increased parallelism and faster encryption primitives.

9

 Our prototype returned correct results for all tests: both the number of records and the
contents of each record matches that returned by the baseline MySQL installation.

A sampling of our results is displayed in Figure 2, which displays the query processing time for
our PIR prototype versus the MySQL base time over tests from each category. The
“unoptimized” curve corresponds to our prototype with no parallelism, and the “optimized”

curve corresponds to the implementation with one additional processing thread.

Figure 2: PIR Time vs. MySQL base time

We present more detailed results in the remainder of this section. In each plot, when a curve is
fitted to the data, it is done so using least-squares regression. The coefficient of determination for
each curve is labeled R^2. This coefficient takes values between 0 and 1; values near 1 indicate
an excellent fit, and values near 0 indicate a weak correlation between the curve and data.

10

Tiny Queries

The tiny test set consists of 304 queries that return less than ten rows from the test database. Our
results are given in four plots below. The first plot corresponds to the total query response time;
note that the total query response time for our prototype is greater than that for the default
MySQL installation. The second plot shows the client query compilation time. For tiny queries,
the query compilation time of our prototype consumes nearly all of the total query response time.
This reflects the fact that the time required to complete keyword oblivious-transfer is
independent of the size of the query result. So, while the results to not take long to transmit from
the isolated box to the server (reflected in the final plot), the query compilation time is as
expensive as it would be for larger queries.

While it may seem as though this result implies that our protocol is not well-suited for tiny
queries, observe that the total query response time is still small. We feel that the tradeoff is
justified, given the scale of the data involved.

Note that the index lookup and search plot indicates no time needed by our prototype. This is due
to the fact that client query compilation and index lookup or search correspond to the same
portion of our protocol; the entire time is accounted for in the client query compilation data.

Figure 3: Response Time for Tiny Queries

11

Small Queries

The small test set consists of 224 queries that return between ten and 1000 records from the test
database. Our results are given in four plots below. The first plot corresponds to the total query
response time; note that the total query response time for our prototype is greater than that for the
default MySQL installation, but only by a constant factor. This result is due to the need to
decrypt results sent from the isolated box, and can be minimized to an arbitrary degree with
increased parallelism and faster hardware. The second plot shows the client query compilation
time. Note that the query compilation time for small queries falls in the same range as for tiny
queries. This reflects the fact that keyword oblivious transfer time is independent of the query
result size. Rather, it scales linearly in the number of records in the database, and the amount of
value-repetition among the entries.

Figure 4: Response Time for Small Queries

12

Medium Queries

The medium test set consists of 32 queries that return between 1000 and 10 000 records from the
test database. Our results are given in four plots below. The first plot corresponds to the total
query response time. As in the previous set of tests cases, our prototype’s total query response

time differs from the baseline MySQL time by a constant factor. This effect can be minimized to
an arbitrary degree using the same methods discussed previously. The second plot shows the
client query compilation time. Note that the query compilation time for small queries falls in the
same range as for tiny queries and small. This reflects the fact that keyword oblivious transfer
time is independent of the query result size. However, for result sets of this size, query
compilation corresponds to a much smaller portion of the overall response time, likewise
mirrored in the striking similarities between the first and fourth plots below. At this point, the
time needed to complete the keyword oblivious-transfer protocol is effectively marginalized by
the time needed to transfer and decrypt the large amount of result data.

Figure 5: Response Time for Medium Queries

13

Large Queries

The large test set consists of 4 queries that return more than 10 000 records from the test
database. Recall that the entire test database is 60 gigabytes, so each query in the large set
corresponds to between five and ten gigabytes of response data. Our results are given in four
plots below. The first plot corresponds to the total query response time. As in the previous set of
tests cases, our prototype’s total query response time differs from the baseline MySQL time by a

constant factor. The second plot shows the client query compilation time. Note that the curve that
fits these data points indicates a correlation between result size and query compilation time. This
is almost surely a spurious effect of the small number of sample points; there is no reason to
believe that query compilation time should differ at all from the other test sets. As with the
medium tests, query compilation corresponds to a small portion of the overall response time.

Figure 6: Response Time for Large Queries

14

7 Activities

We performed the following activities throughout the course of this project.

1. Developed initial protocol, which was based on pre-computing all possible database views

for a particular attribute, and transferring them to the isolated box on-demand. This gives the
isolated box a coarser view of database accesses, but is not nearly as performant as the
approach discussed above.

2. Modified initial protocol to work over rows rather than views, to arrive at the approach
discussed above.

3. Implemented the primitives needed by the protocol, including the Kurosawa-Ogata keyword-
oblivious transfer protocol, the RSA algorithm, and the needed operations over large
integers.

4. Implemented a prototype of the client, server, and isolated box in C++.
5. Integrated the prototype with the MIT-LL test harness.
6. Installed and configured the hardware infrastructure needed to run the performance

evaluation.

8 Conclusion

We demonstrated an efficient protocol to perform keyword search in a privacy-preserving way. It
was a very rewarding experience for our team. However, we want to pursue several future
directions for this project. On the fundamentals side we want to explore support for more
expressive queries. We want to see whether there are even more opportunities for making the
protocol more efficient. University of Wisconsin has a very strong database group. We plan to
collaborate with the database group to find more applications of the PIR technology. We are very
excited about further opportunities on this project.

9 Acronyms

AES – Advanced Encryption System
CQC – Client Query Compilation
IARPA – Intelligence Advance Research Projects Agency
ILS – Index, Lookup and Search
KOT – Keyword Oblivious Transfer
MIT-LL – Massachusetts Institute of Technology Lincoln Labs
PIR – Private Information Retrieval
RSA - Rivest, Shamir and Adleman
SSL – Secure Socket Layer

15

10 References

S. Son, V. Shmatikov. "The Hitchhiker's Guide to DNS Cache Poisoning". In Proc. of 6th
International ICST Conference on Security and Privacy in Communication Networks
(SecureComm), 2010.

M. Bond, V. Srivastava, K. McKinley, V. Shmatikov. "Efficient, Context-Sensitive Detection of
Real-World Semantic Attacks". Proc. of 5th ACM SIGPLAN Workshop on Programming
Languages and Analysis for Security (PLAS), 2010.

I. Roy, S. Setty, A. Kilzer, V. Shmatikov, E. Witchel. "Airavat: Security and Privacy for
MapReduce". Proc. of 7th USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2010.

L. Kruger, M. Fredrikson, S. Jha, V. Shmatikov. “SSH Password Authentication Using Secure
Function Evaluation”. Under Submission.

Matthew Fredrikson, Benjamin Livshits: RePriv: Re-Envisioning In-Browser Privacy. Microsoft
Research Technical Report MSR-TR-2010-116, August '10.1

1
 A portion of this work was done while the first author was employed by Microsoft.

16

Appendix A: SSH Password Authentication Using Secure Function Evaluation

The following is an unpublished manuscript containing research done under the PIR contract.
The authors are Louis Kruger, Matthew Fredrikson, Somesh Jha, and Vitaly Shmatikov, all
supported by the contract for the duration of this research.

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

